#### Downstream Technology

## Treibstoffqualität – Was macht den Unterschied?

Treibstoffnorm, Qualitätssicherung, Leistungsmerkmale



## Vortragsprogramm



- (1) Treibstoffnormung Anforderungen und Eigenschaften
- (2) Treibstoffqualität Von Anfang bis Ende
- (3) Was unterscheidet Treibstoffe und was können sie?
  - Additive und deren Einsatzbereich
  - Anwendung im Verbrennungsmotor
- (4) Zusammenfassung



## Vortragsprogramm



#### (1) Treibstoffnormung - Anforderungen und Eigenschaften

- (2) Treibstoffqualität Von Anfang bis Ende
- (3) Was unterscheidet Treibstoffe und was können sie?
  - Additive und deren Einsatzbereich
  - Anwendung im Verbrennungsmotor
- (4) Zusammenfassung



# Bei der Treibstoffherstellung sind viele unterschiedliche Aspekte zu berücksichtigen

## Produktanforderungen aus ... Verteilungssystemen

Durchsatzgeschwindigkeit Sicherheit Lagerbeständigkeit

#### **Anwendung**

Materialverträglichkeit Betriebsbedingungen Klimaverhältnisse Schadstoffemission

## Einhaltung international / national genormter

Einhaltung international / national genormtei

M I N D E ST - Anforderungen



Gesetze

Transportbestimmungen

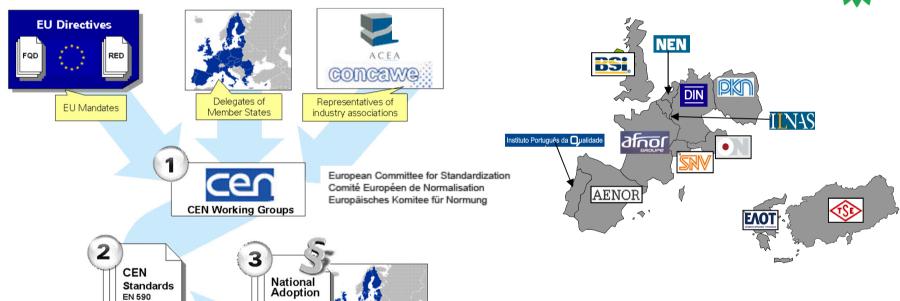
Umweltschutz

Verbraucherschutz

Sicherheit

Downstream




Mindestqualitäten nach EN 228 und EN 590

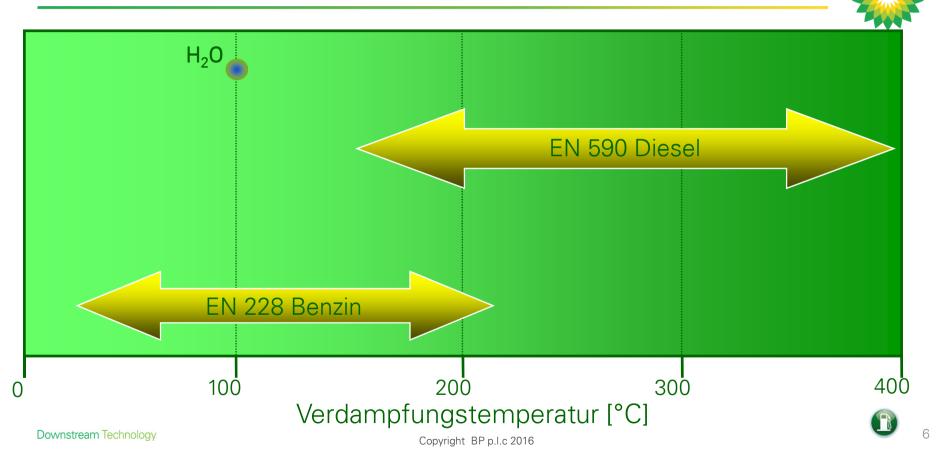
Copyright BP p.l.c 2016



## Standardisierung in Europa






Anforderungsnormen werden per nationalem Gesetz verbindlich!



EN 228

DIN EN 590 BS EN 228

## Benzin- und Dieseltreibstoff sind sehr unterschiedlich





## Treibstoffe – Genormte Parameter (Beispiele)

| Parameter                      | Einheit | Grenzwerte                                        | Auswirkung auf Fahrzeug                                       |  |
|--------------------------------|---------|---------------------------------------------------|---------------------------------------------------------------|--|
| Ottotreibstoff gemäss EN 228   |         |                                                   |                                                               |  |
| ROZ<br>MOZ                     | -       | mind. 95 bzw. 98<br>mind. 85 bzw. 88              | Klopfen niedrige & mittlere n<br>Klopfen hohe n und hohe M    |  |
| Dampfdruck                     | kPa     | Sommer <b>40 - 60</b><br>Winter <b>60 - 90</b>    | Kaltstart, Heissstart,<br>Verdampfungsemissionen              |  |
| Dieseltreibstoff gemäss EN 590 |         |                                                   |                                                               |  |
| Cetanzahl                      | -       | Min. 51                                           | Verbrennung, Startverhalten,<br>Abgas- und Geräuschemissionen |  |
| CFPP –<br>Kaltfiltrierbarkeit  | °C      | Sommer max. 0<br>Übergang max 10<br>Winter max 20 | Filtrierbarkeit bei niedrigen<br>Temperaturen                 |  |

Downstream Technology Copyright BP p.l.c 2016



## Vortragsprogramm



- (1) Treibstoffnormung Anforderungen und Eigenschaften
- (2) Treibstoffqualität Von Anfang bis Ende
- (3) Was unterscheidet Treibstoffe und was können sie?
  - Additive und deren Einsatzbereich
  - Anwendung im Verbrennungsmotor
- (4) Zusammenfassung



## Produktqualität – Das Fundament



- Qualitätsmanagementsystem: Qualitätsprozesse mit Rollen und Verantwortlichkeiten für eine Koordination, schnellere Entscheidungsfindung und Prozessausführung
- **Qualitätspolitik:** Setzt die Produktqualität in den Kontext der Unternehmensführung
- Qualitätssicherung: Definiert Prozesse zur Qualitätswahrung von Material, Arbeitsabläufen, Produkten und Dienstleistungen
- **Qualitätskontrolle:** Stellt die Qualität von der Rohöl-Förderung bis zum Kunden sicher
- Kontinuierliche Verbesserung: Lernen aus Qualitätsvorfällen zur fortwährenden Optimierung





## Sicherstellung der Treibstoffqualität entlang der Lieferkette



Raffinerie



Lagerung



Tankstelle



Troubleshooting
Spezifikationen

Überwachung

Feldanalysen Audits Re

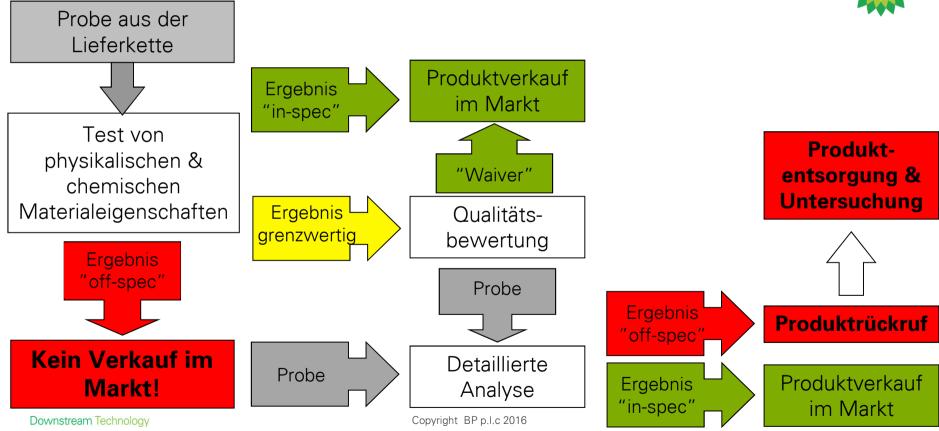
Reklamationen



Kunde



Versorgung




Logistik

R

## Allgemeiner Qualitätskontrollprozess





## Vortragsprogramm



- (1) Treibstoffnormung Anforderungen und Eigenschaften
- (2) Treibstoffqualität Von Anfang bis Ende

#### (3) Was unterscheidet Treibstoffe und was können sie?

- Additive und deren Einsatzbereich
- Anwendung im Verbrennungsmotor
- (4) Zusammenfassung



### Additive sind kein Bestandteil der Mindestqualitäten



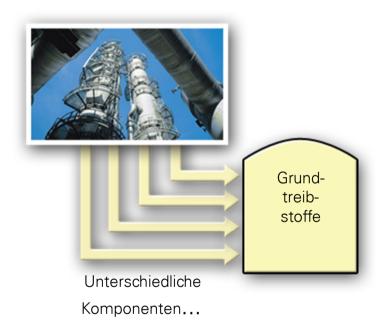
### Mindestanforderungen

Ottotreibstoff: EN 228

Dieseltreibstoff: EN 590

- Konventionelle Treibstoffe sind ein Kompromiss aus dem, was technisch wünschenswert ist und dem, was wirtschaftlich noch zu vertreten ist.
- Darüber hinausgehende Eigenschaften, die den Kompromiss mildern, sind aus unserer Sicht und jener der Automobilindustrie für die Anwendungen im Fahrzeug und für die Umwelt sinnvoll.
- Additive leisten einen wichtigen Beitrag zur Verbesserung der Produktqualität und auch für die Entlastung unserer Umwelt.

#### Was sind Treibstoff-Additive?



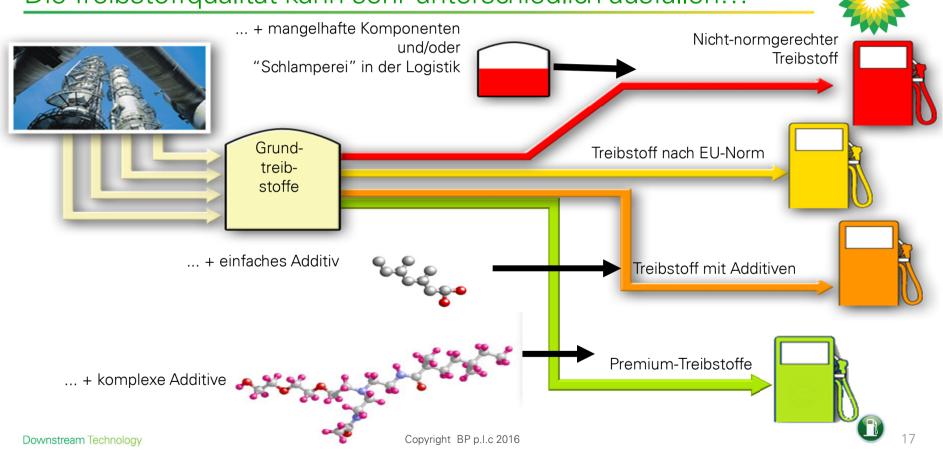

- Vollorganische (metallfreie), treibstofflösliche, chemische Wirksubstanzen.
- Anders als in Schmierstoffen (bis zu 25 Vol-% Additivanteil) werden in Treibstoffen nur Konzentrationen bis 2'500 Vppm (0.25 Vol-%) eingesetzt.
- Die Aufgabe der Additive ist es, bestimmte Treibstoff-Eigenschaften zu verbessern, unerwünschte Eigenschaften und Wechselwirkungen zwischen Fahrzeugtechnik (z.B. Metalle, Elastomere) und Treibstoff möglichst zu minimieren.

P

## Die Treibstoffqualität kann sehr unterschiedlich ausfallen ...






Downstream Technology Copyright BP p.l.c 2016

# Primär-Additive (Beispiele) - Einsatz in Raffinerien



| Additiv-Typ                            | Einfluss auf                                |
|----------------------------------------|---------------------------------------------|
| Zündbeschleuniger                      | Anhebung der Cetanzahl                      |
| Antioxidantien                         | Verbesserung der Lagerstabilität            |
| Antistatic                             | Verbesserung der Leitfähigkeit (Sicherheit) |
| Farbstoffe                             | Kennzeichnung (z.B. Heizöl)                 |
| MDFI (Middle Distillate Flow Improver) | Verbesserung der Filtrierbarkeit von Diesel |

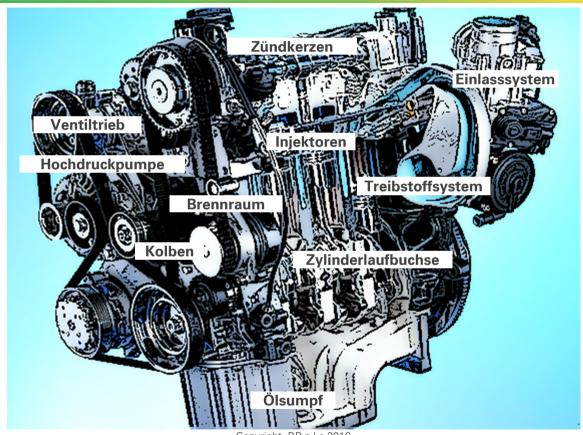
## Die Treibstoffqualität kann sehr unterschiedlich ausfallen...



bp

## Leistungs-Additive (Beispiele)

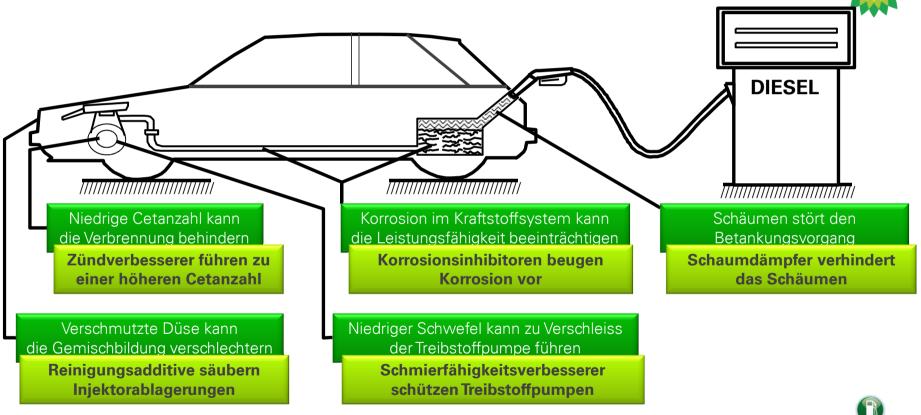
## - Einsatz bei Tankwagen-Befüllung




| Additiv-Typ                                       | Einfluss auf                                                   |  |
|---------------------------------------------------|----------------------------------------------------------------|--|
| Detergentien<br>(Reinigungsmittel)                | Bessere Motoratmung (Benzin) und Einspritzung (Benzin, Diesel) |  |
| Schaumbremsen                                     | Vermindert lästiges Schäumen (Diesel)                          |  |
| Korrosionsinhibitoren und<br>Metall-Deaktivatoren | Materialbeständigkeit<br>(Benzin und Diesel)                   |  |
| Zündbeschleuniger und<br>Anti-Klopfmittel         | Verbesserung der Cetanzahl (Diesel) bzw. Oktanzahl (Benzin)    |  |
| Friction Modifier, Lubricants                     | Reibungsminderung (Benzin), Schmierfähigkeit (Diesel)          |  |
| Demulgatoren (Dehazer)                            | Vermeidung von Emulsionen bei Feuchtigkeit                     |  |

R

## Wo Treibstoffadditive im Motor wirken





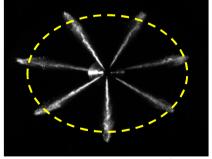

Downstream Technology

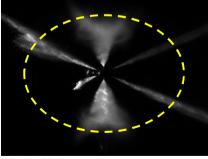
Copyright BP p.l.c 2016

## Additive können Probleme in Diesel-Fahrzeugen lösen



ad


## Treibstoffe ohne Reinigungszusätze können zu Ablagerungen bei Treibstoffinjektoren führen


bp

- Verbrennung von Treibstoffen führt zu Rückständen
- Verschmutzte Treibstoffinjektoren können zu ... führen:
  - Verlust an Motorleistung
  - Erhöhter Treibstoffverbrauch
  - Mehr Treibstoffemissionen
  - Höheres Risiko von ungeplanten Werkstattaufenthalten und damit weniger Zeit auf der Strasse – das, was zählt!

#### **Neuer Injektor:**

- Symmetrisches Strahlbild
  - Erleichterte Gemischbildung





#### **Verschmutzer Injektor:**

- Unsymmetrisches Strahlbild
- Erschwerte Gemischbildung

Downstream Technology

Copyright BP p.l.c 2016

21

#### Weitere bekannte Probleme beim Dieselmotor



#### **Niedrige Temperatur**

> Filterverstopfung




Verstopfte Treibstofffilter durch kristallisierte Dieselkomponenten

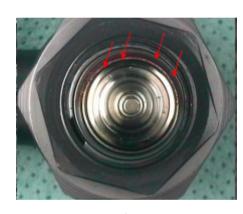
Fliessverbesserer

Downstream Technology

#### Schmierfähigkeit

> Abrieb




Abrieb am Kolben einer Verteilerpumpe

Schmierfähigkeitsverbesserer

Copyright BP p.l.c 2016

#### **Freies Wasser**

> Korrosion



Rost auf einem Druckregulierungsventil

Korrosions-inhibitor



## Zusammenfassung



- Die Mindestanforderungen für Treibstoffe in Europa sind in Normen (Benzin EN 228, Diesel EN 590) festgelegt.
- In **internationalen Gremien** unterliegen die Normen der Kontrolle und Weiterentwicklung; Diesel und Benzin sind grundsätzlich unterschiedlich.
- Die (Mindest-)Qualität von Treibstoffen muss in einer **langen Lieferkette** "von der Ölförderung bis in den Kundentank" gewährleistet werden.
- Zur Sicherstellung der Produktqualität ist ein umfangreiches Kontrollsystem notwendig.
- Es besteht keine Verpflichtung, **leistungssteigernde Zusätze (Additive)** in Treibstoffen zu verwenden (Norm = Mindestqualität).
- Die Mindestanforderungen der Treibstoffnormen werden mit Zugabe von Additiven übertroffen, um so die **Leistungsfähigkeit und Zuverlässigkeit** eines Verbrennungsmotors zu verbessern.

P

